NONTRIVIAL SOLUTIONS FOR STURM–LIOUVILLE SYSTEMS VIA A LOCAL MINIMUM THEOREM FOR FUNCTIONALS
نویسندگان
چکیده
منابع مشابه
NON-TRIVIAL SOLUTIONS FOR p-HARMONIC TYPE EQUATIONS VIA A LOCAL MINIMUM THEOREM FOR FUNCTIONALS
p∗ := ⎧⎨ ⎩ pN N − 2p if p < N 2 , +∞, if p ≥ N2 . Regarding the function a : Ω × R → R, we assume that A : Ω̄× R → R, A(x, ξ) is continuous in Ω̄ × R, with continuous derivative with respect to ξ, a = DξA = A′, having the following properties: Received November 9, 2014, accepted March 5, 2015. Communicated by Eiji Yanagida. 2010 Mathematics Subject Classification: 35J35, 35J60.
متن کاملNontrivial solutions for p-Laplacian systems
The paper deals with the existence and nonexistence of nontrivial nonnegative solutions for the sublinear quasilinear system div (|∇ui |p−2∇ui)+ λfi(u1, . . . , un)= 0 in Ω, ui = 0 on ∂Ω, i = 1, . . . , n, where p > 1, Ω is a bounded domain in RN (N 2) with smooth boundary, and fi , i = 1, . . . , n, are continuous, nonnegative functions. Let u = (u1, . . . , un), ‖u‖ = ∑n i=1 |ui |, we prove t...
متن کاملchannel estimation for mimo-ofdm systems
تخمین دقیق مشخصات کانال در سیستم های مخابراتی یک امر مهم محسوب می گردد. این امر به ویژه در کانال های بیسیم با خاصیت فرکانس گزینی و زمان گزینی شدید، چالش بزرگی است. مقالات متعدد پر از روش های مبتکرانه ای برای طراحی و آنالیز الگوریتم های تخمین کانال است که بیشتر آنها از روش های خاصی استفاده می کنند که یا دارای عملکرد خوب با پیچیدگی محاسباتی بالا هستند و یا با عملکرد نه چندان خوب پیچیدگی پایینی...
Existence of Solutions for some Nonlinear Volterra Integral Equations via Petryshyn's Fixed Point Theorem
In this paper, we study the existence of solutions of some nonlinear Volterra integral equations by using the techniques of measures of noncompactness and the Petryshyn's fixed point theorem in Banach space. We also present some examples of the integral equation to confirm the efficiency of our results.
متن کاملThe Complete Nontrivial-Intersection Theorem for Systems of Finite Sets
The theorem presented and proved in this paper can be viewed as an extension or improvement of our recent Complete Intersection Theorem [1] and may be called the Complete Nontrivial-Intersection Theorem. It goes considerably beyond the well-known Hilton Milner Theorem [10]. We put the result into the proper perspective with a brief sketch of the key steps in its development, beginning with the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Australian Mathematical Society
سال: 2013
ISSN: 0004-9727,1755-1633
DOI: 10.1017/s000497271300035x